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Abstract This paper describes the finite element solution of conjugate heat transfer problems
with and without the use of gap elements. Direct and iterative methods to incorporate gap elements
into a general finite element program are presented, along with their advantages and disadvantages
of the two gap element treatments in the framework of finite elements. The numerical performance
of the iterative gap element treatment is discussed in detail in comparison with analytical solutions
for both 2- and 3-D gap conductance problems. Numerical tests show that the number of iterations
depends on the non-dimensional number Bi = hL/k, and it increases approximately linearly with Bi
for Bi $ 0.6. Here, for gap heat transfer problems, h is taken to be the inverse of the contact
resistance. This conclusion holds true for both 2- and 3-D problems, for both linear and quadratic
elements and for both transient and steady state calculations. Further numerical results for
conjugate heat transfer problems encountered in heat exchanger and micro chemical reactors are
computed using the gap element approach, the direct numerical simulations and analytical solutions
whenever solvable. The results reveal that for the standard heat exchanger designs, an accurate
prediction of temperature distribution in the moving streams must take into consideration the radial
temperature distribution and the accuracy of the calculations depends on the non-dimensional
number Bi = hR/2k. From gap element calculations, it is found that classical analytical solutions are
valid for a heat transfer analysis of an exchanger system, only when Bi , 0.1. This important point
so far has been neglected in virtually all the textbooks on heat transfer and must be included to
complete the heat transfer theory for heat exchanger designs. Results also suggest that for thermal
fluids systems with chemical reactions such as micro fuel cells, the gap element approach yields
accurate results only when the heat transfer coefficient that accounts for the chemical reactions is
used. However, when these heat transfer coefficients are not available, direct numerical simulations
should be used for an accurate prediction of the thermal performance of these systems.
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Nomenclature
CP = heat capacity
h = heat transfer coefficient
î, ĵ = unit vectors of the ith, jth components
k = thermal conductivity

L = length
P = discretized nodal pressure array
Q = volumetric heat source
r = radius
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Introduction
Many thermal and fluid flow systems involve conjugate heat transfer between
solids and moving fluids. Accurate prediction of temperature distribution in
both the solids and liquids in these systems is of critical importance for a
fundamental understanding of the physics governing the thermal and fluid
flow processes and for practical system design and optimization. When
detailed thermal and fluid flow distributions are required, the thermal balance
and the Navier–Stokes equations must be solved, along with appropriate flow
and thermal boundary conditions along the solid–liquid interface. Falling into
this category are the thermal entrance problems, many microscale thermal and
flow problems, novel microelectronic cooling designs involving microscale
oscillating jets and nanostructure heat transfer applications (Srinivas and
Fletcher, 1992; Cebeci and Bradshaw, 1989; Tannehill et al., 1997; Gartling and
Reddy, 1994; LeBounty et al., 1999; Narumanchi et al., 2000). On the other hand,
for many other thermal systems in use today, the detailed thermal
characteristics and fluid flow structure near the solid–liquid interface are
not required in order to obtain a reasonably good representation of thermal
performance from the design point of view. For these systems, the heat transfer
between the solid and liquid are approximated by a lumped heat transfer
coefficient, and in many cases, a plug flow field is used. Notable examples of
this type include the macroscale heat exchangers where the overall heat
transfer coefficient is used to eliminate the need for the detailed calculations of
the temperature distributions in the solid separator dividing the two fluid
streams of different temperatures. Classified into this class of problems are
also the metal casting processes where the heat transfer through the gap
between the solidifying metal and the mold is characterized by a heat
conductance and the metal forging processes where heat transfer occurs
between the contact surfaces of the mold and workpiece.

The procedures for predicting the performance of conjugate heat transfer by
solving the complete thermal balance and Navier–Stokes equations have been
well established, thanks to the research effort of past several decades on

T,T = temperature, discretized temperature
u, U = velocity, discretized velocity
x, y = dimensionless coordinates
Greek
a = thermal diffusivity
b = thermal expansion coefficient
dij = delta function
f = shape function for velocity
u = shape function for temperature and

concentration
c = shape function for pressure
m = dynamic viscosity

n = kinematic viscosity
›V = boundary of computational domain
7 = gradient operator
r = density
V = computational domain
Subscripts
i,j = the ith, jth point
n = the nth component
Superscripts
i,j = the ith, jth component
T = matrix transpose
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numerical development (Gartling and Reddy, 1994; Rule et al., 2000). Criteria for
mesh arrangement and accuracy as well as benchmark problems are
documented (Davis, 1983). However, there appears to have been very limited
work, if any, on the use of gap elements to model the gap heat transfer and the
temperature distributions in the regions enclosing the gap. The computational
procedures and numerical performance of the gap elements as applied to
thermal calculations have not yet been reported for thermal and fluid flow
systems. This is particularly true for the case where the nodes across the gap
regions are not coincident. Gap elements have been used successfully in
modeling mechanic contact problems in the framework of finite elements using
the popular Lagrangian multiplier method or the penalty approaches (Bathe
and Chaudhary, 1984; Stadler and Weiss, 1979) and have continued to attracted
a great deal of attention among researchers (Landenberger and El-Zafrany,
1999; Choi and Chung, 1996). The concepts and methodology used in the solid
mechanics, although not directly applicable, should be useful in developing the
procedures for heat transfer calculations. The numerical development for gap
heat transfer calculations of course is not a direct copy of the established
numerical implementation of what has been proved successful in solid
mechanics for contact problems, because of the unique characteristics of heat
transfer involving moving fluids and solids. This is also because unlike the
contact problems, the two opposite sides across a gap are never in contact from
the heat transfer point of view.

The objective of this paper is two-fold:

(1) to present a numerical procedure for incorporating into the existing finite
element programs the gap elements as applied to conjugate heat transfer,
and

(2) to assess the accuracy and applicability of gap elements for conjugate
heat transfer calculations.

While the thrust for the former comes from the desire to establish a systematic
approach for conjugate heat transfer problems, the latter is derived from the
need to develop a clear understanding of basic assumptions in the simplified
approach commonly taken for macroscale heat exchanger problems and to
determine under what conditions these assumptions start to break down. The
importance of the latter can not be overemphasized, especially in light of the
urgent demand to develop optimal procedures for manufacturing microscale
thermal MEMS devices, which have recently merited a great deal of attention.
In assessing numerical performance, issues of accuracy and applicability of the
gap elements in modeling the conjugate heat transfer problems must also be
addressed. These issues apparently are best investigated in comparison with the
complete solutions of thermal and fluid flow fields. Numerical results computed by
the gap element formulation below have led to important findings that go far
beyond just the numerical performance issues. Indeed, for some widely performed
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calculations for heat exchanger designs, computed results with gap elements
suggest that additional assumptions and conditions, other than those already
documented in standard textbooks, must be satisfied if the simplified approach is
to yield consistent and accurate results.

In what follows, the finite element solution of the conjugate heat transfer
problems with and without the use of gap elements is presented. Both two
dimensional and three dimensional cases are considered. Two types of gap
element treatments based on direct and iterative approaches and their merits
and disadvantages are described. Numerical implementation and performance
of gap elements used for heat transfer calculations are discussed. Conjugate
heat transfer problems are studied comparatively using the formations with
and without use of gap elements. The information reported in this study should
be of great value not only in developing a systematic computational
methodology for conjugate thermal calculations, but also in developing more
accurate criteria for heat exchanger design and analysis.

Problem statement
Let us consider two types of problems describing heat transfer between two
fluid streams, as illustrated in Figure 1. In Case (a), the fluids of different
temperatures moving in the two channels are divided by a solid separator of
finite thickness. The no slip conditions are required along the interface between
the solid and fluid. The temperature and the heat flux is continuous across the
fluid–solid interface. For the sake of illustration, the counter flow configuration
is considered. The computational procedures and analyses, of course, are
applicable to a concurrent flow configuration as well. In Case (b), the conjugate
heat and flow problem as described in Case (a) is simplified such that the
separator is replaced by a gap and the detailed features of heat transfer
between the two streams divided by the separator are lumped into an overall
heat transfer coefficient. This simplification is quite often made in heat
exchanger designs (Incropera and DeWitt, 1996; Mills, 1999). The heat transfer
between the two streams is therefore characterized by a Newton cooling form,
that is, the heat flux is equal to the lumped overall heat transfer coefficient
times the difference of the temperatures of the two streams. The governing
equations for both cases are the same as below:

7zui ¼ 0 ð1Þ

ri

›ui

›t
þ ri uiz7ð Þui ¼ 27Pi þ hi7

2ui ð2Þ

riCp;i
›Ti

›t
þ riCp;iuiz7Ti ¼ ki7

2Ti ð3Þ
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where the subscript i (i = 1, 2, 3) refers to fluids 1 and 2 and separator,
respectively, and for simplicity only constant properties are considered,
although the numerical code used has no such restrictions. When the above
equation is applied to the separator, the velocity is set to zero. The boundary
conditions are standard, that is, a no-slip condition on the solid, and
temperature and heat flux being continuous across the interface, for the
conjugate problem as stated in Case (a). Those for Case (b) differ along the gap
boundary where the heat transfer is given by,

2k1n1z7T1 ¼ h T1 2 T2ð Þ ¼ k2n2z7T2 ð4Þ

Note that the above equations and boundary conditions are applicable to both
2- and 3-D problems. The gap heat transfer coefficient h, which sometimes is
called gap conductance, is a function of other variables such as pressure and
surface morphology of the gap boundaries.

Finite element formulation
The governing equations for the thermal and fluid flow fields along with the
boundary conditions are solved using the Galerkin finite element method. Since
details are well documented in many textbooks, only an outline is given here. In
essence, the computational domain is first discretized into small elements.
Within each element, the dependent variables u, P and T are interpolated by
shape functions of f, c and u:

uiðx; tÞ ¼ fTU iðtÞ ð5Þ

Figure 1.
Schematic representation

of conjugate heat
transfer problems: (a)

direct numerical
simulation when detailed

flow structure near the
separator is to be

revolved, and (b) the
detailed boundary layer
near the solid separator

is lumped into an overall
heat transfer coefficient

and the flow is simplified
to be a plug flow
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Pðx; tÞ ¼ cTPðtÞ ð6Þ

Tðx; tÞ2 Tr ¼ uTTðtÞ ð7Þ

where U i, P and T are column vectors of element nodal point unknowns.
With the above equations substituted into the governing equations, we get

the residuals R1, R2 and R3 which represent the momentum, mass conversion
and energy equations respectively. The Galerkin form of the Method of
Weighted Residuals seeks to reduce these residuals to zero by making them
orthogonal to the weighting functions, which are chosen to be the same as the
shape functions. Following the standard procedures given in Gartling and
Reddy (1994), the governing equations for the fluid flow and heat transfer are
re-written in the following integral form,Z

V1

cðîz7fT þ d2if
T=rÞdV

� �
U i ¼ 21

Z
V1

ccTdV

� �
P ð8Þ

Z
V1

rffTdV

� �
dU i

dt
þ

Z
V1

rfuz7fTdV

� �
U i

2

Z
V1

ðîz7fþ d2if=rÞcTdV

� �
P

þ

Z
V1

hð7fz7fT þ 2d2ifzf
T=r 2ÞdV

� �
U i þ

Z
V1

hðîz7fÞðĵz7fTÞdV

� �
U j

¼

Z
›V1

nz �szîfds ð9Þ

Z
V1

rCpuu
TdV

� �
dT

dt
þ

Z
V1

rCpuuz7uTdV

� �
T

þ

Z
V1

k7uz7uTdV

� �
T ¼ 2

Z
›V1

qTuds ð10Þ

Once the form of shape functions f, u, and c is specified, the integrals defined
in the above equations can be expressed by the matrix equation. The
momentum and energy equations may be combined into a single global matrix
equation:
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M 0

0 NT

" #
_U

_T

" #
þ

AðU Þ þ K þ 1pEM21
p E T 0

0 DTðU Þ þ LT

2
4

3
5

�
U

T

" #
¼

F

GT

" #
ð11Þ

In constructing the above matrix equation, the penalty formulation has been
applied, and P in the momentum equation is substituted by:

1

1p
M 21

p E TU :

The coefficient matrices in the above equation are calculated by:

Mp ¼

Z
V1

ccTdV ;

NT ¼

Z
V1

rCpuu
TdV

M ¼

Z
V1

uuTdV ;

Ei ¼

Z
V1

ðîz7fþ d2if=rÞcTdV

LT ¼

Z
V1

k7uz7uTdV ;

AðU Þ ¼

Z
V1

rfuz7uTdV

DTðUÞ ¼

Z
V1

rCpuuz7uTdV ;

GT ¼ 2

Z
›V1

qTuds
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F ¼

Z
›V1

ftznds

K ij ¼

Z
V1

hð7fz7fT þ 2d2ifzf
T=r 2ÞdV

� �
dij þ

Z
V1

hðîz7fÞðĵz7fTÞdV

where U is a global vector containing all nodal values of velocity components u,
v and w. The assembled global matrix equations are stored in the skyline form
and solved using the Gaussian elimination method. The successive substitution
method is applied for non-linear iteration, and the time derivatives are
approximated using the implicit finite difference scheme, with automatic time
step control. The above formulations were explicitly written for problems with
axisymmetry, such as pipe flow and heat transfer. With d2i = 0, the above
formulations are applicable to both 2-D (i = 1,2) and for 3-D (i = 1,2,3) problems.

Treatments of gap elements
Two treatments are differentiated for the use of the gap elements in the finite
element solution of conjugate heat transfer problems, depending on the
arrangement of the nodes on the opposite sides of a gap.

Direct method
In the first treatment, the nodes across the gap formed by the two adjacent
bodies are constructed with such a constraint that the nodes match on a one-to-
one basis, as appear in Figure 2a. The formulation for this case is relatively
straightforward and the calculation requires no iteration for a linear conduction
problem. The mesh generation, though, is somewhat tedious and could perturb
the existing mesh generation problem to some extent, because it is necessary to
account for both sides across the gap. Taking the linear element as an example,
the finite element formulation for the heat flux on side one of the gap by this
treatment may be described below:

Z
uhðT1 2 T2ÞdS ¼

Z
huðuT

T1
1

T2
1

0
@

1
AT1 2 uT

T1
1

T2
1

0
@

1
AÞdS

¼
a11 a12 b11 b12

a21 a22 b21 b22

" # T1
1

T2
1

T1
2

T2
2

0
BBBBBB@

1
CCCCCCA

ð15Þ

where u T = (0.5(1 2 j ),0.5(1+j ), aij =
R

huiujdS and bij = 2
R

huiujdS.
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Similarly, an elemental matrix may be constructed for the heat flux along the
opposite side of the gap. These elemental matrices are then assembled into the
global finite element matrix to obtain the final solution. For most finite element
programs, however, a more convenient practice would be to perform the above
calculations on both sides at the same time and form a combined elemental
matrix, which is then incorporated into the global matrix. Apparently, the
above formulations can be directly extended to the higher order elements and
to 3-D gap elements.

The advantage of the above approach is that it is intuitive and easy to apply
and requires no iteration if the heat transfer coefficient is not temperature

Figure 2.
Illustration of two

different treatments of
gap elements for finite

element solutions of
conjugate heat transfer

problems: (a) and (b) for
2-D problems and (c) and

(d) for 3-D problems
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dependent. There are, however, several drawbacks associated with this
approach. First, it is very difficult to incorporate the above formulation into a
commercial finite element package, because of the inaccessibility of the source
code. This is important in that many commercially available codes do not have
this feature, despite the fact it is simple to apply. Another, yet more serious,
drawback of this approach is that it fails when the nodes on the two sides
between the gap do not have one-to-one correspondence, as shown in Figure 2b
and d. In many engineering calculations, different nodes (or node distributions)
are applied in the two different regions embracing the gap to maximize the
computational efficiency. There are also situations in which the corresponding
nodes are not at the same geometric locations, even although the total number
of nodes is the same on both sides of a gap. These arise frequently when an
adaptive algorithm is applied. Dislocated nodes also occur in moving boundary
problems such as metal forging where the nodes on the one side of the gap slide
during each time step while those on the other side remain stationary. To solve
these problems, we apply an iterative procedure for incorporating the gap
elements, as described below.

Iterative method
Referring to Figure 2b and d, we consider a general case where the two nodes
(A and C) are not along the line perpendicular to the two opposite sides and
going through A. Thus when the heat flux along element i is considered, the
temperature at the corresponding geometric point at the opposite side is
required. To locate this point, a straight line, i.e. AB̄, is drawn perpendicular to
both sides and is passing through the nodal point (i.e. A) under consideration.
The intercept of this straight line and the boundary element (i.e. element j ) on
the opposite side gives the needed geometric coordinates, with which the
temperature at the point can be determined by interpolating the temperatures
at the nodes of the element. The procedures for interpolation and related
formulas for both 2- and 3-D cases are given in the Appendix.

The algorithm for the calculations may now be described. To calculate
the heat flux on a gap element, the geometrically corresponding points on
its opposite side (e.g. Point B in Figure 2b and d) are determined by
searching through all boundary elements on the opposite side and their
temperatures are interpolated from the boundary elements that they are
associated with. The search algorithm in part is similar to that used to
determine the shadowing effects for surface radiative exchange
calculations. Once the temperatures are known by interpolation, the heat
flux is then calculated as described in the standard finite element
formulation,
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Z
uhðT1 2 T2ÞdS ¼

Z
huðuT

T1
1

T2
1

0
@

1
AT1 2 uTBÞdS

¼
a11 a12

a21 a22

" #
T1

1

T2
1

0
@

1
A2

F1

F1

 !
ð16Þ

where F1 =
R
uiTBdS. Note that in actual integration, TB corresponds to

the value at the integration point and thus may involve several different
elements on the opposite side of an element being considered. The above
equation can then be readily incorporated into the global matrix. As the
temperature at Point B is not directly solved as a component of the
unknown vector and has to be interpolated from the solutions, the process
is iterative even for a linear heat transfer problem.

Results and discussion
In this section, a few numerical examples are provided to illustrate the
usefulness of the above formulations for conjugate heat transfer calculations.
While both gap element formulations are incorporated into the finite element
program used for the calculations to follow and are tested against available
data, the focus is on the second method because of its unrestricted applications.

Testing with analytical solutions
The finite element formulation with the second gap element treatment is first
tested against analytical solutions. Both 2- and 3-D calculations were carried
out for the heat transfer through a gap between the two blocks with constant
properties and at different temperatures, as appears in the insert of Figure 3.
Tests were also performed for linear and higher order elements of both 2- and
3-D. The temperature distribution in the two blocks is plotted in Figure 3, along
with analytical solutions. Excellent agreement exists between the numerical
and analytical solutions, validating the code development. It is noted here that
the problem itself is 2-D but it serves a good testing base against which both 2-
and 3-D gap element calculations are checked. Figure 4 shows the number of
iterations required for convergence (relative tolerance is set at 1 £ 10 2 5).
Apparently, the convergence rate is a strong function of dimensional parameter
group (Bi = hL/k ) characterizing the heat transfer across the gap. For most
engineering applications, hL/k lies between 0.01 and 18 (Incropera and DeWitt,
1996). The tested results are calculated using the simple back substitution
method. A higher convergence rate is possible with the Newton–Ralphson
method. It is worth noting that because the problem is linear, the equal-nodes
gap element formulation would require no iterations at all. Numerical
experience with these test problems also showed that the same number of
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iterations is required for both equal-nodes and unequal-nodes meshes when the
iterative formulation is applied. Our tests included a variety of mesh
distributions and many different types of elements. Both accuracy and number
of required iterations are not sensitive to the mesh distributions and types of
elements used, linear or quadratic. Also, numerical results show that the same
conclusion holds true for all 2-D, axisymmetric and 3-D cases tested.

The computer code is also capable of performing transient calculations.
Some computed results are given in Figure 5 for the transient gap heat transfer
for the above configuration by assuming that the two blocks are initially at
300 K and subject to the boundary conditions at t . 0. The calculations used an
implicit time difference scheme. The number of iterations with gap elements is
found to be the same for very time step. It is apparent from the results that for
the problem under consideration, the temperature in both blocks reaches a
quasi-steady state in a period of 20 s.

Heat exchanger problems
Perhaps, one of the most important applications of gap elements is in the
prediction of heat exchanger performance. The textbook treatment of heat
transfer between two streams in a heat exchanger is to formulate the heat flux
using an overall heat transfer coefficient and the temperature difference
between the two streams. The formula is very similar to the gap heat transfer
description (equation (4)). We consider the case as shown in the insert of Figure
6, where two fluid streams move in the opposite directions in a concentric pipe.

Figure 3.
Comparison of numerical
results with analytical
solutions for gap
conduction problems.
Parameters used for
computation: thermal
conductivity
(k ) = 148 W/m-K for
the top block and thermal
conductivity
(k ) = 237 W/m-K for the
bottom block. L = H = W
= 40 mm for both blocks.
Gap conductance
(h ) = 11,080 (W/m2-K).
Bi = hL/k = 1.87. The top
surface is fixed at 500 K
and the bottom at 200 K
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The thermophysical properties and the overall heat transfer coefficients are
assumed constant for the sake of simplicity. For this problem, the analytical
solution is obtained by assuming that the temperatures of two streams are
constant in the radial direction. Also, the overall heat transfer coefficient
includes the effect of the separator dividing the two streams, assuming that the

Figure 4.
Number of iterations
versus Bi = hH/k for

convergence using the
second treatment of gap

elements

Figure 5.
Transient calculations of

gap heat conduction
between two 3-D blocks.

Parameters for
computations: density

(r ) = 2330 kg/m3

and specific heat
(Cp) = 712 J/kg-K for

the top block and
r = 2702 kg/m3 and

Cp = 903 J/kg-K for the
bottom block. Other

parameters are the
same as in Figure 3 and

Bi = 1.87
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heat transfer is one dimensional across the separator (Incropera and DeWitt,
1996). Numerical simulations were carried out and the calculated radial
temperature distribution for the end of the hot stream is plotted in Figure 6 as a
function of Bi = hR/2k where R is the radius of the inner pipe. It is worth noting
that Bi = hR/2k is used for an axisymmetric problem as the one being
considered, and for a long 2-D problem, the height of the channel should be
used in place of R/2. The analytical solution as described in the standard
textbooks assumes no thermal diffusion in the radial direction and matches
well with the temperature profile with Bi = 0.0308 (Incropera and DeWitt, 1996;
Mills, 1999). Inspection of the results shows that the radial temperature
distribution is a strong function of the Bi = hR/2k. In fact, the lager the Bi, the
more non-uniform the radial temperature distribution becomes. The numerical
predictions agree with analytical solutions only when Bi = hR/2k is sufficiently
small. In the classical approach documented in standard textbooks, a uniform
temperature distribution is tacitly assumed for heat exchanger calculations.
Clearly this assumption is invalid when the Bi number is large. It is attributed
to the fact that for these conditions the thermal conduction is not fast enough to
dissipate heat transferred from the other moving stream. Our extensive
numerical testing further suggests that the classical 1-D solution is valid only
for hR/2k , 0.1. This conclusion is of critical importance in that in virtually all
textbooks on heat exchanger designs, hR/k has never been considered as a

Figure 6.
Radial temperature
distribution in a concentric
heat exchanger as a
function of Bi = hR/2k.
Parameters used for
computation: diameter
(D) = 25 (mm), flowrate
in the annulus = 0.2 Kg/s,
k = 0.625 W/m-K,
Cp = 4178 J/kg-K,
r = 1000 kg/m3 and
viscosity
(m) = 725 £ 10 2 6 N-s/m2

for the fluid in the inner
pipe; and diameter
(D) = 45 (mm), flowrate
in the annulus = 0.1 Kg/s,
k = 0.138 W/m-K,
Cp = 2131 J/kg-K,
r = 884.1 kg/m3 and
m = 3.25 £ 10 2 2 N-s/m2

for the fluid in the annulus
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criterion. This criterion must be checked and satisfied to ensure the validity of
the widely accepted 1-D analytical treatment. When this criterion is not
satisfied, however, calculations employing the gap elements represent the next
level of simplification and should be used if the detailed flow structure is not
desired.

Microchannels involving heat release
This problem is concerned with heat transfer in a microchannel system
involving chemical reaction and the problem is solved again by using both the
direct numerical solution and the gap element approach. For the direct
numerical solution, both detailed fluid flow and temperature distributions are
calculated. The gap element calculations used the plug flow and the heat
transfer coefficient was obtained using the standard convective heat transfer
correlations. The averaged temperature distributions along the x-direction in
both the upper and lower channels are given in Figure 7. The device is a typical
design for micro fuel cell power generation and the chemical reaction rate may
be simplified as a linear relation. The channel is 100 mm long and 4 mm high.
The hot gas is to provide needed heat to induce the chemical reaction in the cold
stream. In the calculations, the properties of mixtures were used for both
streams, and gaseous species distributions due to combustion processes were
not considered, because of a lack of accurate data. The results show that while
the general trends in temperature distributions are predicted by both the gap
element approach and direction numerical simulations, the values differ by as
much as 20 percent by the two approaches. One important reason for this
discrepancy comes from the fact that the heat transfer coefficient for the gap
element calculations is based on the fluids with no chemical reaction. When the
chemical reaction takes place, the temperature distributions become different
and so is the heat flux along the solid liquid interface. With this correction
taken into account, the difference becomes reasonably small, except near the
solid liquid interface, as expected. Thus, for the gap elements to be useful for
this type of calculations, correct heat transfer coefficients should be used. For
the case where such reliable data are not available, the direct numerical
simulations must be used to calculate the temperature distributions.

For this problem, computed results by both direct numerical simulations and
the gap element approach were also compared with 1-D analytical solutions as
given in the standard textbooks, with the chemical reaction rates set to zero. It
was found that for this particular system, the axial conduction along the
separator is significant. The analytical solution predicts an incorrect
temperature distribution trend for both streams, even with the same heat
transfer coefficient used for gap element calculations. With the axial
conduction in the separator considered for the analytical solution, which
results in considerable algebraic manipulations and very complex formulae, the
match among all the three methods becomes gratifying.
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Concluding remarks
This paper has presented a finite element computational methodology for the
solution of conjugate heat transfer problems with and without the use of gap
elements. The finite element formulation of the conjugate heat transfer
problems was presented, along with two different (i.e. direct and iterative)

Figure 7.
Solution of heat transfer
in a micro fuel cell reactor
using the direct numerical
simulation and gap
element approach. The
channel size: 100 mm
long £ 4 mm height.
The thermal properties
for the hot fluid:
r = 0.6964 kg/m3,
m = 270.1E-07,
k = 40.7E-03 W/m-K,
Cp = 1030 J/kg-K, and
that for the cold fluid:
r = 0.6521 kg/m3,
m = 166.04E-07,
k = 26.39E-03 W/m-K,
Cp = 2158.6 J/kg-K.
Bi = 1.793. The
volumetric heat source
for chemical reaction:
Q = 0.731T+1030 KJ/m3.
The properties of the
separator used for
direct simulations:
r = 2702 kg/m3,
Cp = 903 J/kg-K,
k = 237 W/m-K and
thickness = 2mm
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methods to incorporate gap elements into a general finite element program. The
advantages and disadvantages of the two gap element treatments were also
discussed. The numerical performance of the iterative gap element treatment
has been discussed in detail in comparison with analytical solutions for both
2- and 3-D gap conductance problems. It was found that the number of
iterations depends on the non-dimensional number Bi = hL/k, and it increases
approximately linearly with Bi for Bi $ 0.6. This conclusion remains the same
for both 2- and 3-D problems, for both linear and quadratic elements and for
both transient and steady state calculations. Further numerical results for
conjugate heat transfer problems encountered in heat exchanger and micro
chemical reactors were obtained using the gap element approach, the direct
numerical simulations and analytical solutions whenever solvable. The results
show that for the standard heat exchanger designs, the accurate prediction of
temperature distribution in the moving streams must take into consideration
the radial temperature distribution and the accuracy of the calculation depends
on the non-dimensional number Bi = Rh/k. Based on the calculations using the
gap elements, it is found that Bi , 0.1 is required to ensure the validity of the
classical analytical solutions. This important point has so far been neglected in
virtually all the textbooks on heat transfer and must be included to complete
the heat transfer theory for heat exchanger designs. Results also suggest that
for thermal fluids systems involving chemical reactions such as micro fuel
cells, the gap element approach yields accurate results only when the heat
transfer coefficient exists that allows for the chemical reactions. When these
heat transfer coefficients do not exist, direct numerical simulations should
be used for an accurate prediction of the thermal performance of these
systems.
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Appendix. Interpolation of local coordinates
The interpolation procedures for obtaining geometric coordinates of points at the opposite sides
of a gap element are given below for both 2- and 3-D cases, when the nodes on the two opposite
sides across a gap are not geometrically coincident (Figure 2b and d).

2-D interpolation
Many algorithms may be applied to search and interpolate the corresponding points on the two
opposite sides of a gap element. We present a simple and yet efficient method below, which is
based on the vector dot product. Consider point S (X0, Y0) as the integration point on one side of a
gap element. To find its corresponding point at the opposite side defined by points (X1, Y1) and
(X2, Y2), two vectors V1 and V2 are defined as shown (Figure A1). Further, let l = V1zV2 and let
L denote the length of the segment from (X1, Y1) to (X2, Y2). Then, if l , 0 or l . L then the
projection point is out of the given segment. Otherwise, the coordinates of the projection point
P (X, Y ) are given by the following expression:

X ¼ X1 þ
l

L
ðX2 2 X1Þ ðA:1Þ

and:

Y ¼ Y 1 þ
l

L
ðY 2 2 Y 1Þ

3-D interpolation
The interpolation procedure for 3-D problems is somewhat more involved. Again, we consider
point S (X0, Y0, Z0) and attempts to find the corresponding point (X, Y, Z ) at the opposite side of a
gap element. The side is defined by four points (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3) and (X4, Y4, Z4)
(Figure A2). Firstly, three vectors are calculated: V1 from (X1, Y1, Z1) to (X0, Y0, Z0), V2 from
(X1, Y1, Z1) to (X2, Y2, Z2) and V3 is from (X1, Y1, Z1) to (X4, Y4, Z4). Now, let V = V2^V3. Then,
the unit normal of the plane is given by n = V/|V|. Let l = V1zn, and l is then the length from
(X0, Y0, Z0) to (X, Y, Z ). Thus, the coordinates X, Y and Z are determined by:

X ¼ X0 þ nxzl ðA:2Þ
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Y ¼ Y 0 þ nyzl ðA:3Þ

Z ¼ Z 0 þ nzzl ðA:4Þ

where nx, ny and nz are the components of the unit normal n. To determine if the point is within
the element, we calculate the areas of the four sub-triangular elements. If the sum of these areas is
the same as that of the quadrilateral element, then the point is inside. Otherwise, the point is
considered outside the element. An alternative is to calculation the normals of the plane of these
sub-triangular elements, with point (X, Y, Z ) as the first point and connecting other two points on
each side of the quadrilateral in the same number sequence by which the normal n is defined. If
all the normals of these sub-triangular elements are the same, then the point is inside. Otherwise,
it is outside.
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Figure A1.
Illustration of search for

two points at two
opposite sides for 2-D

gap elements

�
Figure A2.

Determination of two
corresponding points on

two opposite sides of 3-D
gap elements
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